Preserved hypocapnic pial arteriolar constriction during hyperammonemia by glutamine synthetase inhibition.
نویسندگان
چکیده
Ammonia intoxication, which results in astrocytic edema and glutamine accumulation, blocks cerebral vasodilation during hypercapnia but not during hypoxia. Ammonia's effect on blood flow during hypocapnia is unclear, with some brain regions showing a paradoxical increase in flow. Here, we studied the responses to hypocapnia of pial arterioles not surrounded by astrocytic end feet to avoid mechanical compression by local edema. Blood flow was measured by microspheres in pentobarbital sodium-anesthetized rats equipped with closed cranial windows that permitted intravital microscopy. The normal pial arterial constriction in hypocapnia (12 ± 1%; mean ± SE) was blocked (2 ± 1%) during a 6-h intravenous infusion of ammonium acetate, with some regions (cerebrum, midbrain) showing increased flow during hypocapnia. After pretreatment with methionine sulfoximine (MSO), which inhibits glutamine synthesis, the normal hypocapnic constrictor response was retained in pial arterioles (11 ± 2%) during hyperammonemia. The increase in the calculated cerebrovascular resistance also was retained. An analog of MSO that does not block glutamine synthesis (buthionine sulfoximine) was ineffective in maintaining hypocapnic reactivity. In a sodium acetate-treated control group, MSO did not alter the pial arteriolar response. Normal vasoconstrictive ability was shown during ammonium infusion in response to U-46619, a thromboxane analog. We conclude that the inhibition of hypocapnic responsivity induced by ammonium is not due to paralysis of the pial arteriolar smooth muscle or to vascular compression by swollen astrocytes but is in some way due to glutamine metabolically produced from the ammonium.
منابع مشابه
Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat.
Glutamine has been shown to influence endothelial-dependent relaxation and nitric oxide production in vitro, possibly by limiting arginine availability, but its effects in vivo have not been well studied. Hyperammonemia is a pathophysiological condition in which glutamine is elevated and contributes to depressed CO(2) reactivity of cerebral arterioles. We tested the hypothesis that acute hypera...
متن کاملEffect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats.
Inhibition of glutamine synthesis reduces astrocyte swelling and associated physiological abnormalities during acute ammonium acetate infusion in anesthetized rats. We tested the hypothesis that inhibition of glutamine accumulation during more prolonged ammonium acetate infusion in unanesthetized rats reduces cortical astrocyte swelling and immunohistochemical changes in astrocytic proteins. Ra...
متن کاملCerebrovascular response to decreased hematocrit: effect of cell-free hemoglobin, plasma viscosity, and CO2.
The effect of transfusing a nonextravasating, zero-link polymer of cell-free hemoglobin on pial arteriolar diameter, cerebral blood flow (CBF), and O2 transport (CBF x arterial O2 content) was compared with that of transfusing an albumin solution at equivalent reductions in hematocrit (approximately 19%) in anesthetized cats. The influence of viscosity was assessed by coinfusion of a high-visco...
متن کاملInteraction of glutamine and arginine on cerebrovascular reactivity to hypercapnia.
Glutamine is purported to inhibit recycling of citrulline to arginine and to limit nitric oxide release in vitro. However, vasoactive effects of glutamine have not been clearly demonstrated in vivo. During hyperammonemia, impaired cerebrovascular reactivity to CO(2) is related to glutamine accumulation. We tested the hypotheses that 1) glutamine infusion in the absence of hyperammonemia impairs...
متن کاملInhibition by ketanserin of serotonin induced cerebral arteriolar constriction.
We studied the effects of serotonin on pial arterioles in anesthetized cats equipped with acutely implanted cranial window for the observation of the pial microcirculation. Serotonin topically applied caused cerebral arteriolar constriction. Ketanserin, a specific 5-HT2 inhibitor, completely blocked the vascular response of serotonin. Aggregated platelet supernatant was topically applied and ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 276 2 شماره
صفحات -
تاریخ انتشار 1999